Prompt Configuration Feature
Overview
The AI Platform Engineering Helm chart now supports flexible prompt configuration, allowing users to choose between predefined orchestration behaviors or provide custom configurations.
Feature Components
1. Configuration Files
The chart includes two predefined prompt configurations:
-
data/prompt_config.yaml- Default configuration- Standard multi-agent orchestrator
- Balanced between flexibility and control
- Maintains strict provenance and source attribution
- Best for: Development, testing, general platform operations
-
data/prompt_config.deep_agent.yaml- Deep Agent configuration- Strict zero-hallucination mode
- Enhanced provenance tracking
- Enforces tool-only responses
- Best for: Production, compliance, mission-critical systems
2. Helm Values Configuration
Two new values control prompt behavior:
# Select predefined configuration
promptConfigType: "default" # Options: "default" or "deep_agent"
# Or provide custom configuration (overrides promptConfigType)
promptConfig: ""
3. Template Logic
The templates/prompt-config.yaml template implements a three-tier configuration hierarchy:
- Custom override (
promptConfig) - Highest priority - Deep Agent (
promptConfigType: "deep_agent") - Second priority - Default (
promptConfigType: "default") - Fallback
Usage Examples
Example 1: Deploy with Default Configuration
helm install ai-platform charts/ai-platform-engineering/ \
--set promptConfigType=default
Example 2: Deploy with Deep Agent Configuration
helm install ai-platform charts/ai-platform-engineering/ \
--set promptConfigType=deep_agent
Example 3: Deploy with Custom Configuration
Create a custom values file:
# custom-prompt-values.yaml
promptConfig: |
agent_name: "Custom Platform Agent"
agent_description: |
Specialized agent for custom workflows
system_prompt_template: |
Custom system prompt...
agent_prompts:
argocd:
system_prompt: "Custom ArgoCD routing..."
# ... additional configuration
Deploy:
helm install ai-platform charts/ai-platform-engineering/ \
--values custom-prompt-values.yaml
Example 4: Switch Configuration on Upgrade
# Upgrade from default to deep_agent
helm upgrade ai-platform charts/ai-platform-engineering/ \
--set promptConfigType=deep_agent
Configuration Comparison
| Feature | Default | Deep Agent | Custom |
|---|---|---|---|
| Zero-hallucination | Enforced | Strictly enforced | User-defined |
| Provenance tracking | Standard | Enhanced | User-defined |
| Tool response handling | Verbatim forwarding | Verbatim + validation | User-defined |
| Complexity | Low | Low | High |
| Customizability | None | None | Full |
| Use case | General | Mission-critical | Specialized |
Key Differences Between Default and Deep Agent
Default Configuration
- Agent Name: "AI Platform Engineer"
- Focus: Balanced orchestration with standard compliance
- Behavioral Model: Standards-compliant orchestrator
- Validation: ComplianceGuard and Aggregator meta-agents
- Response Style: Professional, markdown-formatted with provenance
Deep Agent Configuration
- Agent Name: "AI Platform Engineer — Deep Agent"
- Focus: Maximum adherence to zero-hallucination principles
- Behavioral Model: Deep Agent Orchestrator with strict tool-only mode
- Validation: Enhanced provenance validation and source verification
- Response Style: Structured, highly traceable with explicit source attribution
- Additional Features:
- Explicit "Source-of-Truth Policy"
- Stricter routing logic with RAG-first fallback
- Enhanced tool-response handling rules
- Explicit behavior model separation (tool-only vs RAG modes)
Implementation Details
Template Hierarchy
data:
prompt_config.yaml: |
{{- if .Values.promptConfig }}
# Use custom configuration (highest priority)
{{ .Values.promptConfig | nindent 4 }}
{{- else if eq .Values.promptConfigType "deep_agent" }}
# Use deep agent configuration
{{ .Files.Get "data/prompt_config.deep_agent.yaml" | nindent 4 }}
{{- else }}
# Use default configuration (fallback)
{{ .Files.Get "data/prompt_config.yaml" | nindent 4 }}
{{- end }}
Configuration Loading
- Check if
promptConfigis set → Use custom configuration - Check if
promptConfigTypeequals "deep_agent" → Loadprompt_config.deep_agent.yaml - Otherwise → Load default
prompt_config.yaml
Testing
All three configuration modes have been tested:
# Test default
helm template test charts/ai-platform-engineering/ \
--set promptConfigType=default | grep agent_name
# Test deep_agent
helm template test charts/ai-platform-engineering/ \
--set promptConfigType=deep_agent | grep agent_name
# Test custom
helm template test charts/ai-platform-engineering/ \
--set-string 'promptConfig=agent_name: "Custom"' | grep agent_name
Backward Compatibility
This feature is fully backward compatible:
- Existing deployments without
promptConfigTypewill use "default" - The original
promptConfigoverride mechanism is preserved - No breaking changes to existing chart functionality
Best Practices
Development and Testing
promptConfigType: "default"
Production Deployments
promptConfigType: "deep_agent"
Specialized Workflows
promptConfig: |
# Custom configuration
...
Documentation
- Chart README:
/charts/ai-platform-engineering/README.md - Example Values:
/charts/ai-platform-engineering/values-prompt-examples.yaml - Default Config:
/charts/ai-platform-engineering/data/prompt_config.yaml - Deep Agent Config:
/charts/ai-platform-engineering/data/prompt_config.deep_agent.yaml
Future Enhancements
Potential future additions:
- Additional predefined configurations for specific use cases
- Configuration validation and schema enforcement
- Dynamic configuration switching without pod restart
- Configuration metrics and observability