Skip to main content

🚀 Quick Start

Get started with CAIPE quickly using Docker Compose on your laptop or VM.

Prerequisites

  1. Clone the repository

    git clone https://github.com/cnoe-io/ai-platform-engineering.git
    cd ai-platform-engineering
  2. Configure environment variables

    cp .env.example .env

    Update .env with your configuration. For detailed .env examples and LLM provider setup, see:

    Here's a sample configuration: Note: More info on setting up LLM Provider is here : https://github.com/cnoe-io/cnoe-agent-utils

########### CAIPE Agent Configuration ###########

# Enable the agents you want to deploy
ENABLE_GITHUB=true

# A2A transport configuration (p2p or slim)
A2A_TRANSPORT=p2p

# MCP mode configuration (http or stdio)
MCP_MODE=http

# LLM provider configuration
LLM_PROVIDER=<azure-openai or aws-bedrock or openai.>

## Example Azure OpenAI Configuration
AZURE_OPENAI_API_KEY=
AZURE_OPENAI_ENDPOINT=
AZURE_OPENAI_API_VERSION=
AZURE_OPENAI_DEPLOYMENT=


## Example AWS Bedrock Configuration
AWS_BEDROCK_ENABLE_PROMPT_CACHE=true
AWS_ACCESS_KEY_ID=
AWS_SECRET_ACCESS_KEY=
AWS_REGION=
AWS_DEFAULT_REGION=
AWS_BEDROCK_MODEL_ID=<AWS_BEDROCK_MODEL_ID>
BEDROCK_TEMPERATURE=

########### GitHub Agent Configuration ###########
GITHUB_PERSONAL_ACCESS_TOKEN=<GITHUB_PERSONAL_ACCESS_TOKEN>

🚀 Start CAIPE with Docker Compose Profiles

Use Docker Compose profiles to enable specific agents. Profiles allow you to selectively start only the agents you need.

Available Agent Profiles:

  • argocd - ArgoCD GitOps for Kubernetes deployments
  • aws - AWS cloud operations and resource management
  • backstage - Backstage developer portal integration
  • confluence - Confluence documentation management
  • github - GitHub source code management and pull requests
  • jira - Jira issue tracking and project management
  • komodor - Komodor Kubernetes troubleshooting
  • pagerduty - PagerDuty incident management
  • petstore - Petstore API example agent
  • rag - RAG (Retrieval-Augmented Generation) agent for knowledge base queries
  • slack - Slack team communication
  • splunk - Splunk observability and logging
  • weather - Weather API example agent
  • webex - Webex video communication

Special Profiles:

  • agentforge - Agent Forge Backstage Plugin web UI (can be combined with any agent profile)
  • slim - AGNTCY Slim dataplane service for centralized agent communication (alternative to p2p)

RAG Profile (rag):

  • Purpose: Provides knowledge base queries using Retrieval-Augmented Generation (RAG) and GraphRAG
  • Services Included: RAG server, RAG agent, RAG web UI, Neo4j (knowledge graph), Milvus (vector database), Redis
  • Use Cases: Answer questions from knowledge base, query entity relationships, search documentation
  • Web UI: Accessible at http://localhost:9447 when running
  • Configuration: Set ENABLE_GRAPH_RAG=true in .env to enable GraphRAG capabilities
  • Note: This profile starts multiple supporting services (databases, vector stores) and may take longer to initialize

Tracing Profile (tracing):

  • Purpose: Enables distributed tracing and observability using Langfuse v3
  • Services Included: Langfuse web UI, worker, ClickHouse, PostgreSQL, Redis, MinIO
  • Use Cases: Monitor agent interactions, trace request flows across agents, evaluate agent performance
  • Web UI: Accessible at http://localhost:3000 when running
  • Configuration Required: Add to your .env file:
    ENABLE_TRACING=true
    LANGFUSE_PUBLIC_KEY=your-public-key
    LANGFUSE_SECRET_KEY=your-secret-key
    LANGFUSE_HOST=http://langfuse-web:3000
  • Note: Can be combined with any agent profile to add observability to your setup

Examples:

# Start only the GitHub agent
COMPOSE_PROFILES="github" docker compose up
# Start multiple agents: ArgoCD, AWS, Backstage, and RAG
COMPOSE_PROFILES="argocd,aws,backstage,rag" docker compose up
# Start RAG agent with tracing enabled
# This enables knowledge base queries with full observability
COMPOSE_PROFILES="rag,tracing" docker compose up
# Start GitHub and RAG agents with tracing enabled
# Combines source code management, knowledge base, and observability
COMPOSE_PROFILES="github,rag,tracing" docker compose up
# Start GitHub, Petstore, Weather agents with Agent Forge UI and tracing enabled
# Complete development setup with example agents, web UI, and observability
COMPOSE_PROFILES="github,petstore,weather,agentforge,tracing" docker compose up
# Start agents with SLIM dataplane for centralized communication
# Enables AGNTCY Slim dataplane and control plane services
COMPOSE_PROFILES="slim,github,aws" docker compose up

Combining Profiles:

  • The rag and tracing profiles work well together for knowledge base operations with full observability
  • The agentforge profile provides a web UI and can be combined with any agent profiles
  • The slim profile enables centralized communication via AGNTCY Slim dataplane (set A2A_TRANSPORT=slim in .env when using this profile)
  • When using tracing, ensure your .env has ENABLE_TRACING=true and Langfuse credentials configured
  • Access RAG web UI at http://localhost:9447, Langfuse dashboard at http://localhost:3000, and Agent Forge at http://localhost:13000

Note:

  • If no docker compose profiles are specified, only the CAIPE supervisor agent is started
  • Multiple profiles can be combined by separating them with commas
  • The tracing and agentforge profiles can be added to any combination of agents

Connect to the Agent

Once your agents are running, connect using one of these methods:

Option A: Using Docker (host network)

docker run -it --network=host ghcr.io/cnoe-io/agent-chat-cli:stable

Option B: Using uvx

uvx --no-cache git+https://github.com/cnoe-io/agent-chat-cli.git a2a

Option C: Using Agent Forge Backstage Plugin

Run the Agent Forge plugin with Docker:

docker run -d \
--name backstage-agent-forge \
-p 13000:3000 \
-e NODE_ENV=development \
ghcr.io/cnoe-io/backstage-plugin-agent-forge:latest

Or with Docker Compose:

COMPOSE_PROFILES="agentforge" docker compose up

Once the container is started, open agent-forge in your browser:

http://localhost:13000

💡 Learn more about Agent Forge Backstage Plugin and other user interfaces.

📊 Run Agents for Tracing & Evaluation

Enable observability and evaluation with Langfuse v3:

  1. In .env file

    ENABLE_TRACING=true
  2. Start with tracing enabled

    docker compose down
    COMPOSE_PROFILES="github,tracing" docker compose up
  3. Access Langfuse dashboard at http://localhost:3000 and create an account and apply for API key

  4. Configure Langfuse keys in .env

    LANGFUSE_PUBLIC_KEY=your-public-key
    LANGFUSE_SECRET_KEY=your-secret-key
    LANGFUSE_HOST=http://langfuse-web:3000 # If used as docker-compose host

Next Steps